

HYDRAULIC DESIGN OF WATER TREATMENT PLANT

CAPACITY - 40 MLD

Generated by inodedesign

DETAIL DESIGN REPORT

1/1

TABLE OF CONTENTS

Hydraulic Design Of Cascade Aerator	10
1. Inlet Shaft	10
2. Steps And Planner	10
3. Collection Launder	11
Hydraulic Design Of Parshall Flume	14
1. Parshall Flume	14
2. Upstream Channel	14
3 Downstream Channel	15
Hydraulic Design Of Flash Mixer (Square With Distribution Chamber)	19
1. Chamber	19
2. Power Requirement	20
3. Openings	21
Hydraulic Design Of Pipe	23
Hydraulic Design Of Pipe	25
Hydraulic Design Of Clariflocculator	28
1 Central Shaft	28
2. Flocculator	29
3. Power Requirement	30
4. Clarifier	32
5. Weir	33
6. Notches	33
7. Peripheral Launder	34
Hydraulic Design Of Channel	37
Hydraulic Design Of Filter Inlet Channel	39
Hydraulic Design Of Rapid Sand Gravity Filter	42
1. Filter Beds	42
2. Depth Of Sand And Gravel	43
3. Depth Of Water	43
4. Under Drain System	44
5. Backwashing Of Filter	46
6. Wash Water Trough	47
7. Gullet	48
8. Wash Water Tank	48
Mechanical Design	51
1. Filter Inlet	51
2. Filter Outlet	51
3. Wash Water Inlet	52
4. Wash Water Outlet	53
5. Air Blower Design	53
6. Wash Water Pump	54
Hydraulic Design Of Pure Water Channel	56
Hydraulic Design Of Pipe	58
Hydraulic Design Of Sump - Circular	61
Hydraulic Design Of Chlorination	63
1. Chlorinators	63
2. Emergency Chlorinators	63

1

3. Chlorine Room	64
Hydraulic Design Of Alum Units	66
1. Alum Requirements	66
2. Alum Solution Tanks	66
3. Preperation Of Solutions	66
4. Storage Space - Alum And Tcl Units	68
4.1 Tcl Requirements	68
4.2 Alum Requirements	68
Head Losses And Reduced Levels (Cascade Aerator)	74
1. Steps And Planner	74
2. Collection Launder	74
Head Losses And Reduced Levels (Parshall Flume)	76
1. Upstream Channel	76
2. Downstream Channel	77
Head Losses And Reduced Levels (Flash Mixer)	78
Head Losses And Reduced Levels (Pipe)	79
Head Losses And Reduced Levels (Pipe)	80
Head Losses And Reduced Levels (Clariflocculator)	81
1. Flocculator And Clarifier	81
2. Collection Launder	81
Head Losses And Reduced Levels (Channel)	83
Head Losses And Reduced Levels (Filter Inlet Channel)	84
Head Losses And Reduced Levels (Rapid Sand Gravity Filter)	85
Head Losses And Reduced Levels (Pure Water Channel)	86
Head Losses And Reduced Levels (Pipe)	87
Head Losses And Reduced Levels (Pure Water Sump)	88

99%

ANNEXURE - I

• STANDARD TABLES

Generated by inodedesign

	STANDARD DIMENSIONS FOR PARSHALL FLUME								
	(*Reference Manual on Sewerage and Sewerage Treatment- Table 5.5)								
Flow Range Q _{max} (MLD)	W	A	В	С	D	F	G	К	Z
Upto 5	75	460	450	175	255	150	300	25	56
5 to 30	150	610	600	315	391	300	600	75	113
30 to 45	225	865	850	375	566	300	750	75	113
45 to 170	300	1350	1322	600	831	600	900	75	225
170 to 250	450	1425	1357	750	1010	600	900	75	225
250 to 350	600	1500	1472	900	1188	600	900	75	225
350 to 500	900	1650	1619	1200	1547	600	900	75	225
500 to 700	1200	1800	1766	1500	1906	600	900	75	225
700 to 850	1500	2100	2060	2100	2625	600	900	75	225
850 to 1400	2400	2400	2353	2700	3344	600	900	75	225

STANDARD POWER REQUIREMENT							
	(*Reference IS 7090 - 4985)						
Detention TimeVelocity GradientNet Power Input per Unit VolumeNet power Input							
Sec	S ⁻¹	Watts/m ³ Volume	Watts/m ³ of flow per hr				
60	300	72	1.2				
50	360	104	1.4				
40 450 162 1.8							
30	600	288	2.4				
25	720	415	2.9				
20	900	648	3.6				
	**Calc	rulations based on water temperatureof	530 ° C				

ANNEXURE - II

HYDRAULIC DESIGN CALCULATIONS

Generated by inodedesign

TABLE NO.1 - DESIGNED FLOWS AND CAPACITIES FOR VARIOUS ELEMENTS

SP NO	ei emente	FLOW	NO. OF UNITS	OVERLOADING	LOSS
5K NU.	ELEMIENI	MLD	NOS.	%	%
1	Cascade Aerator	40	1	20	5
2	Parshall Flume	40	1	20	5
3	Flash Mixer (Square DC)	40	2	20	5
4	Pipe	40	1	20	5
5	Clarriflocculator (Radial flow)	40	1	20	5
6	Channel	40	1	20	5
7	Rapid Sand Gravity Filter	40	1	20	5
8	Pure Water Channel	40	1	20	5
9	Pipe	40	1	20	5
10	Circular Sump	40	1	20	5

SR	ei ement	DESIGNED FLOW / UNIT	CAPACITY / UNITS			
NO.	ELEVIENI	MLD	m³/day	m³/hr	m ³ /sec	
1	Cascade Aerator	50.000	50,000.000	2,083.333	0.579	
2	Parshall Flume	50.000	50,000.000	2,083.333	0.579	
3	Flash Mixer (Square DC)	25.000	25,000.000	1,041.667	0.289	
4	Pipe	50.000	50,000.000	2,083.333	0.579	
5	Clarriflocculator (Radial flow)	50.000	50,000.000	2,083.333	0.579	
6	Channel	50.000	50,000.000	2,083.333	0.579	
7	Rapid Sand Gravity Filter	50.000	50,000.000	2,083.333	0.579	
8	Pure Water Channel	50.000	50,000.000	2,083.333	0.579	
9	Pipe	50.000	50,000.000	2,083.333	0.579	
10	Circular Sump	50.000	50,000.000	2,083.333	0.579	

Formula Used:

1 Designed Flow in MLD	$Designed \ Flow \ Per \ Unit = rac{\left[Flow imes \left[rac{Overloading}{100} + rac{Loss}{100} ight] ight] + Flow}{No. \ of \ Units}$
2 Capacity in m³/day	$Capacity\left(Q ight)=Designed\ Flow\ Per\ Unit imes 10^3$
3 Capacity in m³/hr	$Capacity\left(Q ight)=rac{Designed\ Flow\ Per\ Unit imes 10^3}{24}$
4 Capacity in m ³ /sec	$Capacity\left(Q ight)=rac{Designed\ Flow\ Per\ Unit imes 10^3}{24 imes 60 imes 60}$

HYDRAULIC DESIGN

- INLET SHAFT
- STEPS AND PLANNER
- **COLLECTION LAUNDER**

HYDRAULIC DESIGN OF CASCADE AERATOR

The role of Aeration is to remove undesirable dissolved gases in water and to add oxygen to water to convert undesirable substances to a more manageable form.

1. INLET SHAFT

(Reference Table No. 1)

- ✓ Number of Units = 1 Nos
- \checkmark Designed Flow Per Unit = 50 MLD
- \checkmark Designed Capacity in m³/sec = 0.579 m³ /sec

1.1 ASSUMPTIONS & CALCULATIONS:

> Assumed velocity of flow through Inlet Shaft = 0.65 m/sec

Diameter of Inlet Shaft Required

$$d = \left[\frac{4 \times Designed \ Flow \ (m^3/sec)}{\pi \times Velocity \ (m/s)}\right]^{0.5}$$
$$= \left[\frac{4 \times 0.579}{3.14 \times 0.65}\right]^{0.5}$$

$$D_{Required} = 1.065 m$$

Provided Internal Diameter of Inlet Shaft = 1.1 m

 \triangleright Assumed thickness of Inlet Shaft = 0.1 m

Hence, Outer Diameter = 1.300 m

1.2 VALIDATION CHECKS:

1. Provided Diameter 1.1 m > Required Diameter = 1.065 m

Diameter Provided > Diameter Required.

2. Velocity Achieved = 0.610 m/sec

Hence, Velocity achieved is within the permissible Range (0.6 -1.25m/sec)

DESIGN SUMMARY	- INI	ET SHAFT
Velocity	=	0.610 m/sec
Internal Diameter of Inlet Shaft	=	1.1 m
Thickness of Inlet Shaft	=	0.1 m
Outer Diameter of Inlet Shaft	=	1.300 m

2. STEPS AND PLANNER

(Reference Table No. 1)

- \checkmark Number of Units = 1 Nos
- \checkmark Designed Flow Per Unit = 50 MLD
- \checkmark Designed Capacity in m³/hr = 2,083.333 m³/hr

2.1 ASSUMPTIONS & CALCULATIONS:

> Assumed criteria for area of Aerator = $0.015 \text{ m}^2/\text{m}^3/\text{h}$

Area of Aerator Required

= Designed Flow $(m^3/hr) \times Criteria (m^2/m^3/h)$

$Area_{Required} = 31$ $Provide Area of Ae$ $Diameter of Aerator = $ $= $ $Diameter of Aerator = 6.4$ $Assumed Number of steps = 5 NOS$ $Assumed Rise of each step = 0.3 m$ $Size of Tread = \frac{D}{}$ $= \frac{6.4}{}$ $Size of Tread = 0.4$ $Provided Treat$ $Actual Diameter of Aerator = Treat$ $= 0.4$	$\frac{4}{\pi} \ge A + O.D^{2}$ $\frac{4}{\pi} \ge 32 + 1.300^{2}$ $\frac{4}{\pi} \ge 32 + 1.300^{2}$
Provide Area of AeDiameter of Aerator= $$ $=$ $$ Diameter of Aerator= \wedge $>$ Assumed Number of steps = 5 NOS $>$ Assumed Rise of each step = 0.3 mSize of Tread= $=$ $=$ $6.$ Size of Tread= 0.3 Provided Tread $Actual Diameter of Aerator$ $=$ 0.4	$\frac{4}{\pi} \ge A + O.D^{2}$ $\frac{4}{\pi} \ge 32 + 1.300^{2}$ $\frac{4}{\pi} \ge 32 + 1.300^{2}$
$Diameter of Aerator = \sqrt{2}$ $= \sqrt{2}$ $Diameter of Aerator = 6.2$ $Assumed Number of steps = 5 NOS$ $Assumed Rise of each step = 0.3 m$ $Size of Tread = \frac{D}{2}$ $= \frac{6}{2}$ $Size of Tread = 0.3$ $Provided Tread$ $Actual Diameter of Aerator = Tread$ $= 0.4$	$\frac{4}{\pi} \ge A + O.D^{2}$ $\frac{4}{\pi} \ge 32 + 1.300^{2}$ i16 m
$Diameter of Aerator = \sqrt{2}$ $= \sqrt{2}$ $Diameter of Aerator = 6.2$ $Assumed Number of steps = 5 NOS$ $Assumed Rise of each step = 0.3 m$ $Size of Tread = \frac{D}{2}$ $= \frac{6.2}{5ize of Tread} = 0.2$ $Provided Tread$ $Actual Diameter of Aerator = Tread$ $= 0.4$	$\frac{4}{\pi} \ge A + O.D^{2}$ $\frac{4}{\pi} \ge 32 + 1.300^{2}$
$= \sqrt{2}$ $Diameter of Aerator = 6$ $Assumed Number of steps = 5 NOS$ $Assumed Rise of each step = 0.3 m$ $Size of Tread = \frac{D}{-1}$ $= \frac{6.}{5ize of Tread} = 0$ $Provided Treat$ $Actual Diameter of Aerator = Tr = 0.0$	$\frac{4}{\pi} \ge 32 + 1.300^2$
$Diameter of Aerator = 6.$ $\Rightarrow Assumed Number of steps = 5 NOS$ $\Rightarrow Assumed Rise of each step = 0.3 m$ $Size of Tread = \frac{D}{-}$ $= \frac{6.}{Size of Tread} = 0.3$ $Provided Treat$ $Actual Diameter of Aerator = Tr = 0.4$	16 m
$ > Assumed Number of steps = 5 NOS > Assumed Rise of each step = 0.3 m Size of Tread = \frac{D}{C} = \frac{6}{C} = \frac{6}{C} = \frac{1}{C} = $	
$Size \ of \ Tread = \frac{D}{d}$ $= \frac{6}{d}$ $Size \ of \ Tread = 0.4$ $Provided \ Tread$ $Actual \ Diameter \ of \ Aerator = Trice = 0.4$	
$= \frac{6}{5}$ Size of Tread = 0.4 $Provided Treat$ Actual Diameter of Aerator = Tr $= 0.4$	$rac{iameter \ of \ Aerator - O. \ D_{Shaft}}{2 imes No. \ of \ Steps}$
Size of Tread = 0.4 Provided Trea Actual Diameter of Aerator = Tr = 0.4	$rac{516-1.300}{2 imes 5}$
Provided Trea $Actual Diameter of Aerator = Treaset = 0.4$	22 m
$\begin{array}{llllllllllllllllllllllllllllllllllll$	d= 0.6 m
= 0.0	$ead_{Provided} imes (2 imes No. \ of \ Steps) + O. \ D_{Shaft}$
	3 imes (2 imes 5) + 1.300
Actual Diameter of Aerator = 7.3	
Total Height of Rise = Ra	200 m
= 0.3	200 m $se imes No. \ of \ Steps$
Total Height of Rise = 1.3	200 m $se imes No. \ of \ Steps$ $s imes 5$
Actual Diameter of Aerator = 7.3 $Total Height of Rise = Ra$ $= 0.3$	d= 0.6 m $ead_{Provided} imes (2 imes No. \ of \ Steps) + O. \ D_{Shaf}$ 6 imes (2 imes 5) + 1.300

VALIDATION CHECKS:

Actual Area Criteria = $0.020 \text{ m}^2/\text{m}^3/h$

Actual Area Criteria achieved is within the permissible Limit (0.015 to 0.045 m²/m³/h)					
DESIGN SUMMARY - S	STEPS	S & PLANNER			
Actual Area Criteria	=	0.020 m²/m³/h			
Diameter of Aerator	=	7.300 m			
Number of Steps	=	5 NOS			
Tread Size	=	0.6 m			
Rise Size	=	0.3 m			
Total Rise height	=	1.5 m			

3. COLLECTION LAUNDER

- \checkmark Number of Units = 1 Nos
- ✓ Designed Flow Per Unit = 50 MLD

iNODE SOFTWARE CO.

\checkmark Designed Capacity in m³/sec = 0.579 m³/sec **3.1 ASSUMPTIONS & CALCULATIONS:** \gg Assumed velocity of flow = 0.65 m/sec \triangleright Assumed width of collecting Launder = 0.6 m \triangleright Assumed Free Board = 0.3 m Design $Flow(m^3/sec)$ Side Water Depth of Collection Launder = $\overline{2 imes Velocity imes Width \ of \ Launder}$ 0.579= 2 imes 0.65 imes 0.60.742 m $SWD_{Launder}$ = $SWD_{Launder} + Free Board$ Total Depth of Collection Launder = 0.742 + 0.3= Total Depth of Collection Launder = 1.042 m **DESIGN SUMMARY - COLLECTION LAUNDER** Velocity 0.65 m/sec = 0.6 m Width = Side water Depth (SWD) = 0.742 m Free Board 0.3 m = 1.042 m Total Depth of Launder = **O.D SHAFT = 1.300 m** I Ν L **NO. OF STEPS = 5 NOS** Е $\mathbf{TREAD} = \mathbf{0.6} \ \mathbf{m}$ Т S Η RISE = 0.3 mА F $\mathbf{F}.\mathbf{B} = \mathbf{0.3} \ \mathbf{m}$ Т COLLECTION I.D SHAFT = 1.1 mLAUNDER WIDTH = 0.6 m**DIAMETER OF AERATOR = 7.300 m Figure - Cascade Aerator Details** *For Schematic purpose only

COLLECTION

LAUNDER

HYDRAULIC DESIGN

- **PARSHALL FLUME**
- **UPSTREAM CHANNEL**
- **DOWNSTREAM CHANNEL**

HYDRAULIC DESIGN OF PARSHALL FLUME

The role of Parshall Flume (U/S & D/S Channel) is to measure the flow and convey water from Aerator to Flash mixer. Parshall Flume is a type of standing wave flume which is widely used. It can measure discharges varying from 0.001 m³/sec to 100 m³/sec.

1. PARSHALL FLUME

(Reference Table No. 1)

- \checkmark Number of Units = 1 Nos
- ✓ Designed Flow Per Unit = 50 MLD

1.1 STANDARD DIMENSIONS:

LONGITUDNAL SECTION

All above mentioned dimentions are in mm.

1.2 DIMENSIONS OF PARSHALL FLUME:

(*Reference Manual on Sewerage and Sewerage Treatment- Table 5.5)								
W	Α	В	С	D	F	G	K	Z
300	1350	1322	600	831	600	900	75	225

*All above mentioned dimentions are in mm.

2. UPSTREAM CHANNEL

(Reference Table No. 1)

 \checkmark Designed Capacity in m³/sec = 0.579 m³/sec

2.1 ASSUMPTIONS & CALCULATIONS:

- \triangleright Assumed Velocity of Flow = 0.65 m/sec
- > Assumed Free Board = 0.3 m
- \triangleright Assumed Length of Channel = 2.5 m

SOME PAGES ARE KEPT BLANK INTENTIONALLY

HYDRAULIC DESIGN

- CENTRAL SHAFT
- **FLOCCULATOR**
- **POWER REQUIREMENT**
- **CLARIFIER**
- WEIR
- NOTCHES
- **PERIPHERAL LAUNDER**

iNODE SOFTWARE CO.

SAMPLE REPORT

HYDRAULIC DESIGN OF CLARIFLOCCULATOR

1 CENTRAL SHAFT

The role of Central Shaft is to convey water to the clariflocculator. (Reference Table No. 1)

 \checkmark Number of Units = 1 Nos

✓ Designed Flow Per Unit = 50.000 MLD

 \checkmark Designed Capacity in m³/sec = 0.579 m³/sec

1.1.1 ASSUMPTIONS & CALCULATIONS:

> Assumed velocity of flow through Central Shaft = 0.65 m/sec

 $\left[rac{4 imes Designed\ Flow\left(m^3/sec
ight)}{\pi imes ext{Velocity}\left(m/ ext{s}
ight)}
ight]^{ ext{C}}$ Diameter Of Central Shaft Required $\left[\frac{4\times0.579}{3.\,14\times0.65}\right]^{0.5}$ Diameter Of Central Shaft Required 1.065 m =

Provide Internal Diameter of Central Shaft = 1.1 m

> Assumed thickness of Central Shaft = 0.15 m

Hence, Outer Diameter = 1.400 m

1.1.2 VALIDATION CHECKS:

1. Provided Diameter = 1.1 m > Required Diameter = 1.065 m

Hence, Diameter provided of Central Shaft is Sufficient.

2. Velocity Achieved = 0.610 m/s

Hence, Velocity achieved is within the permissible Range(0.6-1.2m/sec).

DESIGN SUMMARY - CENTRAL SHAFT						
Velocity	=	0.610 m/sec				
Internal Diameter of Central Shaft	=	1.1 m				
Thickness of Central Shaft	=	0.15 m				
Outer Diameter of Central Shaft	=	1.400 m				

1.2 PORTS

Ports are being provided at the top portion of the Central shaft with the purpose for outlet of water. (Reference Table No. 1)

- \checkmark Number of Units = 1 Nos
- \checkmark Designed Flow Per Unit = 50.000 MLD
- \checkmark Designed Capacity in m³/sec = 0.579 m³/sec

1.2.1 ASSUMPTIONS & CALCULATIONS:

> Assumed velocity of flow through Ports = 0.65 m/sec

Area of Openings of Ports

Design Flow (m^3/sec)

	=	$\frac{0.579}{0.65}$
Area of Openings of Ports	=	0.891 m ²
 > Assumed Number of Rows = 1 Nos. > Assumed Number of Ports per Rows = 5 N > Assumed width of port = 0.541 m > Assumed Clear Spacing of Ports = 0.150 m 	Tos. n	
Area of each port required	=	$\frac{Area \ of \ Openings \ of \ Ports}{Nos. \ of \ Rows \times Nos. \ of \ Ports \ per \ Row}$
	=	$\frac{0.891}{1 \times 5}$
Area of each port required	=	0.178 m ²
Height of port	=	$\frac{Area \ of \ port \ required}{width \ of \ port}$
	=	$\frac{0.178}{0.541}$
Height of port	=	0.329 m
Provide	heigh	<i>t of port = 0.35 m</i>
Actual Clear Spacing of Ports	=	$rac{(\pi imes { m I.D}) - (Width \ of \ Port imes No. \ of \ Ports \ per \ Row)}{No. \ of \ Ports \ per \ Row}$
	=	$rac{(3.14 imes 1.1) - (0.541 imes 5)}{5}$

Actual Clear Spacing of Ports = 0.150 mm c/c

NOTE: For ease in construction of ports, clear spacing is maintained as a standard value and thereby width of port is calculated accordingly

1.2.2 VALIDATION CHECKS:

1. Provided Area of Ports = 0.189 m^2 > Required Area = 0.178 m^2

Hence, Dimensions of Ports are Sufficient. **DESIGN SUMMARY - PORTS** Velocity through Ports 0.65 m/sec = No. of Rows 1 Nos. = Number of Ports per Row 5 Nos. = *Height of Port* 0.35 m = Width of Port = 0.541 m Actual Clear Spacing Between Ports 0.150 m =

2. FLOCCULATOR

The role of flocculator is to agglomerate the macroflocs generated in the Flash Mixer. The agglomeration helps to build large size and dense flocs which are effectively removed in the Clarifier/Sedimentation Tank. (Reference Table No. 1)

iNODE SOFTWARE CO.

- \checkmark Number of Units = 1 Nos
- ✓ Designed Flow Per Unit = 50.000 MLD
- \checkmark Designed Capacity in m³/sec = 0.579 m³/sec

2.1 ASSUMPTIONS & CALCULATIONS:

- > Assumed Detention Time in Flocculator = 20 minutes
- > Assumed SWD in Flocculator = 4.5 m

Volume of Flocculator	=	$Design \ Flow imes Detention \ Time imes 60$
	=	0.579 imes20 imes60
Volume of Flocculator	=	$694.800 m^3$
Diameter of Flocculator Required	=	$igg[rac{4}{\pi} imesigg[rac{Volumeig(m^3ig)}{SWD(m)}+O.D_{Shaft}^2igg]igg]^{0.5}$
	=	$\left[\frac{4}{3.14}\times\left[\frac{694.800}{4.5}+1.400^2\right]\right]^{0.5}$
$D_{{\scriptscriptstyle F}{\scriptscriptstyle Required}}$	=	14.091 m

Provide Diameter of Flocculator(D_F) = 15 m

2.2 VALIDATION CHECKS:

1. Actual Detention Time Maintained = 22.891 > Assumed Detention time = 20 min

Actual Detention Time Maintained > Assumed Detention Time.

DESIGN SUMMARY	- FLO	CCULATOR
Detention Time	=	20 min
Side Water Depth (SWD _F)	=	4.5 m
Diameter of Flocculator (D_{F})	=	15 m

3. POWER REQUIREMENT

> Assumed Velocity Gradient = 30 sec⁻¹

> Assumed absolute Viscocity of Water = 0.00089 kg/m.s

Power Required =
$$G^2 \times \mu \times \frac{\pi}{4} \times \left(D_F^2 - OD_{shaft}^2\right) \times SWD_F$$

= $30^2 \times 0.00089 \times \frac{3.14}{4} \times \left(15^2 - 1.400^2\right) \times 4.5$

Power Required = 0.631 kw

3.1 PADDLE & BLADE REQUIREMENT:

- \gg Assumed Drag Coefficient = 1.1
- > Assumed Density of Water = 997 kg/m³
- > Assumed Paddle Tip Velocity = 0.5 m/sec
- > Assumed Water Velocity at Paddle Tip = 0.125 m/sec
- (*As per CPEEHO Manual Water Velocity at Paddle tip should be 25% of Paddle tip Velocity.) \geq Assumed Number of Drive Units = 2 Nos.
- > Assumed Number of Arms per Drive Unit = 4 Nos.
- > Assumed Number of Blades = 4 Nos.

Area of Paddles Required	=	$rac{2P}{C_D imes ho imes \left(V-v ight)^3}$
	=	$rac{2 imes 0.631 imes 10^3}{1.1 imes 997 imes (0.5-0.125)^3}$ \
$A_{\scriptscriptstyle P}$	=	21.821 m ²
Area of Blades/Drive Unit	=	$\frac{A_P}{Number of Drives}$
	=	$\frac{21.821}{2}$
Area of Blades/Drive Unit	=	10.911 m ²

*Note : For Detail Calculation & Diagram Refer Annexure III

3.2 VALIDATION CHECKS:

1. Ratio of $A_{\text{blades to}}$ C/S Area of Flocculator = 10.980 %

The Ratio is in between 10 to 25% which is permissible Limit. **DESIGN SUMMARY - POWER, PADDLE & BLADES** 30 sec⁻¹ Velocity Gradient = Power Required = 0.631 kw = Drag Coefficient 1.1 Paddle Tip Velocity = 0.5 m/sec Water Velocity at Paddle Tip = 0.125 m/sec No. of Drive Units 2 Nos. = *No. of Arms per Drive Units* 4 Nos. = No of Blade per Arm 4 Nos. = Height of Blade 1.4 m = Width of Blade 0.3 m = rpm of Blade 3 rpm =

*For schemantic purpose only

4. CLARIFIER

The role of Clarifier is very similar of that of sedimentation tank. Clarifier is the unit in between Flocculator and Filteration Unit. (Reference Table No. 1)

- (Neurober Clinite 1 N
- \checkmark Number of Units = 1 Nos
- \checkmark Designed Flow Per Unit = 50.000 MLD
- \checkmark Designed Capacity in m³/hr = 2,083.333 m³/hr

4.1 ASSUMPTIONS & CALCULATIONS:

> Assumed Slope to Horizontal = 1 in 11		
> Assumed Detention Time in Flocculator = 2	2.5 hou	rs
> Assumed SWD in Clarifier = 3 m		
\geq Assumed Thickness of partition = 0.2 m		
\gg Assumed Surface Overflow Rate (SOR) = 3	$0 \text{ m}^3/\text{m}^2$	² d
Volume of Clarifier		Designed Canadity × Detention Time
volume of Clarifier	=	Designed Capacity × Detention 1 ime
	=	$2,\!083.333 imes 2.5$
Volume of Clarifier	=	5,208.333 m ³
		0
Area Of Clarifier	=	
		SWD
		5208.3333
	=	3
Area Of Clarifier	=	1,736.111 m ²
, ,		
		5.4
Diameter of Clarifier Required	=	$\left\lfloor \frac{4}{\pi} \times A + Df^2 \right\rfloor^{312}$
		$\begin{bmatrix} 4 \\ 0.5 \end{bmatrix}$
	=	$\left \frac{1}{3.14} \times 1,736.111 + 15^2 \right $
$D_{{\it C}{\it Required}}$	=	49.21 m

SOME PAGES ARE KEPT BLANK INTENTIONALLY

HYDRAULIC DESIGN

- **FILTER BED**
- SAND AND GRAVEL
- **DEPTH OF WATER**
- UNDER DRAIN SYSTEM
- **BACKWASHING OF FILTER**
- WASH WATER THROUGH
- **GULLET/GUTTER**
- WASH WATER TANK

HYDRAULIC DESIGN OF RAPID SAND GRAVITY FILTER **1. FILTER BEDS** (Reference Table No. 1) \checkmark Number of Units = 1 Nos. ✓ Designed Flow Per Unit = 50.000 MLD **1.1 ASSUMPTIONS & CALCULATIONS:** \gg Assumed Water for Backwashing = 5 % \triangleright Cumulative Time for Backwashing = 10 min \triangleright Assumed Number of Filter Beds = 2 Nos. > Assumed Rate of Filtration in 20 m^3/m^2 .h \triangleright Assumed Ratio of Length to Width = 1.3 Total Water to be Filtered Designed Capacity + Water for Backwashing = $50.000 + \left[rac{5 imes 50.000}{100} ight] imes 10^3$ = Total Water to be Filtered $52,500.000 \text{ m}^3/\text{day}$ = $24 - rac{Time\ for\ Backwashing}{60}$ Actual Time for Filteration = $24 - \frac{10}{60}$ = Actual Time for Filteration 23.833 Hours = Total Water to be Filtered Flow per Bed = Actual Time for Filteration 52,500.000 23.833 Flow per Bed 2,202.797 m³/hr = Flow per Bed (m^3/hr) Area Required for each Bed = $Rate of Filteration (m^3/m^2.h) \times No of Beds$ 2202.797 20×2 55.070 m^2 Area Required for each Bed = $\left[rac{Area\ Required\ \left(m^2 ight)}{1/(L/W\ Ratio)} ight]^{0.5}$ *Length of Bed Required* $\left\lceil\frac{55.070}{1/1.3}\right\rceil^{0.5}$ Length of Bed Required 8.461 m Provide Length of Bed = 8.5 m

Width of Bed Required	=	$\frac{Length \ Required}{Ratio}$	
	=	$\frac{8.461 \text{ m}}{1.3}$	
Width of Bed Required	=	6.509 m	

Provide Width of Bed = 6.6 m

1.2 VALIDATION CHECKS:

1. Area Provided = 56.100 m^2 > Area Required = 55.070 m^2

Area Provided > Area Required

2. Actual L/W ratio maintained is 1.288

Actual L/W ratio maintained is within the permissible range.(1.11 to 1.66)

DESIGN SUMMARY	Y - FI	LTER BED
Water for Backwashing	=	5 %
Time for Backwahing	=	10 min
Number of Filter Beds	=	2 Nos.
Rate of filteration	=	$20 m^3/m^2.h$
L/W ratio	=	1.288
Length of filter bed	=	8.5 m
Width of filter Bed	=	6.6 m

2. DEPTH OF SAND AND GRAVEL

DESIGN SUMMARY - SAND				
	De	pth of Sand	=	0.6 m
		$d_{\scriptscriptstyle 10}Size$	=	0.6 mm
		d_{60} Size	=	0.75 mm
SR.NO	RANGE IN SIZE (mm)	RANGE IN	DEPTI	H (mm) PROVIDED DEPTH (mm)
1	2 to 5	50) to 80	70

011110	TELLIOL III OILL (IIIII)		
1	2 to 5	50 to 80	70
2	5 to 12	50 to 80	50
3	12 to 20	80 to 130	100
4	20 to 38	80 to 130	120
5	38 to 65	130 to 200	160

DESIGN SUMMARY - GRAVEL Depth of Gravel = 500 mm

3. DEPTH OF WATER

3.1 ASSUMPTIONS & CALCULATIONS:

- > Assumed Depth of water above sand = 1 m
- \gg Assumed Free Board = 0.5 m
 - Total Depth of Filter Box = $D_{Sand} + D_{Gravel} + D_{Water} + Free Board$ = 0.6 + 0.5 + 1 + 0.5
 - Total Depth of Filter Box = 2.600 m
- Generated by inodedesign

	DESI	GN SUMMARY -	DEPT	TH OF WATER	
		Depth of Water	=	1 m	
	Total Do	Free Board	=	0.5 m	
Reference fr Provided Provided I ASSUMI	R DRAIN SYSTEM rom Filter Bed Design) Length of Filter Bed = 8.5 Width of Filter Bed = 6.6 PTIONS & CALCULATIO	5 m m NS:			
 Assumed Assumed Assumed Assumed Assumed 	Sections per filter bed = Ratio of Filter to Perforat Ratio of Laterals to Area Ratio of Area of Manifold	2 Nos. ions = 0.3 % of Orifice = 4 s to Area of Later	als = 1	.5	
Area of filte	er per underdrain section	= Length of L	Filter	$ imes rac{Width \ of \ Filter}{No. \ of \ Underdrain \ sections}$	/Filter Bed
		$= 8.5 \times \frac{6.6}{2}$			
Area of filte	er per underdrain section	$= 28.050 m^2$			
	Area of Orifice Required =	Ratio of Filter	to Per	$forations imes Area \ of \ Filter/Undex$	rdrain Secti
	=	$\frac{0.3}{100}\times 28.050$			
	Area of Orifice Required =	0.084 m ²			
	Area of Lateral Required	= Ratio of La	a teral	to Area of Orifice $ imes$ Area of C	rifice
		= 4×0.084			
	Area of Lateral Required	$= 0.336 m^2$			
A	rea of Manifold Required	= Ratio of Are	a of N	$fanifold \ to \ Area \ of \ Lateral imes Ar$	rea of Later
		= 1.5×0.336			
A	rea of Manifold Required	$= 0.504 m^2$			
Diame	eter of Manifold Required	$= \left[\frac{4 \times A_{Mani}}{\pi}\right]$	$\frac{fold}{}$.5	
		$= \left[\frac{4 \times 0.504}{3.14}\right]$	$\left]^{0.5}$		
Diame	eter of Manifold Required	= 0.801 m			
	Drow	ida Diematar of	N <i>T</i>		

> Assumed height of Pit for Manifold = 0.9 m

Assumed Diameter of Laterals = 50 mm		
Area of each Lateral	=	$rac{\pi}{4} imes D^2_{Lateral}$
	=	$rac{3.14}{4} imes 50^2$
Area of each Lateral	=	$0.00196 m^2$
Number of Laterals Required	=	Area of Laterals
	=	0.336
Number of Laterals Required	=	0.00196 171 Nos
Provide Nu	mber (of Laterals = 172 Nos
Number of Laterals on each side of Manifold	=	$\frac{Number \ of \ Lateral}{2}$
	=	$\frac{171}{2}$
Number of Laterals on each side of Manifold	=	85.500 Nos
Length of Each Lateral	=	$rac{Width \ of \ Filter \ Bed}{2} - D_{Manifold}$
	=	$rac{6.6}{2} - 0.85}{2}$
Length of Each Lateral	=	1.225 m
Ratio	=	Length of Each Lateral Diameter of Lateral
	=	$\frac{1225}{50}$
Ratio	=	24.500 < 60
Required Spacing of Lateral	=	${Length \ of \ Filter \ Bed \over (Number \ of \ Lateral/2)}$
	=	$\frac{8.5}{(172/2)}$
Required Spacing of Lateral	=	100 mm
Provide Spa	icing o	of Lateral = 100 m c/c

\triangleright Assumed diameter of Orifice = 7 mm		
Area of each Orifice	=	$rac{\pi}{4} imes D^2_{Orifice}$
	=	$\frac{3.14}{4}\times7^2$
Area of each Orifice	=	0.0000385 m ²
Number of Orifices per Lateral Required	=	$Area \ of \ Orifice \ No \ of \ Laterals imes Area \ of \ Each \ Orifice \ 0.001$
	=	$\frac{0.084}{171 \times 0.0000385}$
Number of Orifices per Lateral Required	=	14 Nos

Provide Number of Orifices = 15 NOS

	=	$\frac{1.225}{(15/2)}$
Required Spacing of Orifice	=	(15/2) 165 mm c/c
Required Spacing of Orifice	=	165 mm c/c

4.2 VALIDATION CHECKS:

1. Diameter of Manifold Provided = 0.85 m > Diameter of Manifold required = 0.801 m

Spacing of Manifold Provided > Spacing of Manifold Required

2. Ratio of Length of Laterals to Spacing of Lateral = 24.500

Ratio of Length of Laterals to Spacing of Lateral < 60, Hence Okay.

DESIGN SUMMARY - UNDER DRAIN SYSTEM

Sections per filter bed	=	2 Nos
Ratio of Filter to Perforation	=	0.3 %
Ratio of Area of Manifolds to Area of Laterals	=	1.5
Diameter of Manifold	=	0.85 m
Width of Manifold Pit	=	0.9 m
Depth of Manifold Pit	=	0.9 m
Diameter of Lateral	=	50 m
Number of Laterals	=	172 Nos
Diameter of Orifice	=	7 mm
Spacing of Lateral	=	100 mm c/c
Spacing of Orifice	=	140 mm c/c

5. BACKWASHING OF FILTER

SOME PAGES ARE KEPT BLANK INTENTIONALLY

HYDRAULIC DESIGN

PURE WATER CHANNEL

Generated by inodedesign

HYDRAULIC DESIGN OF PURE WATER CHANNEL

The role of Pure Water Channel is to convey water from one element to the another.

(Reference Table No. 1)

- \checkmark Number of Units = 1 Nos
- ✓ Designed Flow Per Unit = 50 MLD
- \checkmark Designed Capacity in m³/sec = 0.579 m³/sec

1.1 ASSUMPTIONS & CALCULATIONS:

- > Assumed velocity of flow through Pure Water Channel = 0.6 m/sec
- \triangleright Assumed Width of Pure Water Channel = 2 m
- \triangleright Assumed Free Board = 2 m
- > Assumed Length of Pure Water Channel = 3 m

Side Water Depth of Pure Water Channel	=	$rac{ ext{Designed Capacity}(m^3/sec)}{ ext{Velocity} imes Width \ of \ Channel}$
	=	$\frac{0.579}{0.6\times2}$
Side Water Depth of Pure Water Channel	=	0.482 m
Total Depth of Pure Water Channel	=	$SWD_{Channel} + Free \ Board$
	=	0.482+2
Total Depth of Pure Water Channel	=	2.482 m

1.2 VALIDATION CHECKS:

1. Velocity Achieved = 0.6 m/s

Hence, Velocity achieved is within the permissible Range (0.6 -1.2 m/sec) **DESIGN SUMMARY - CHANNEL** 0.6 m/sec Velocity = Width = 2 m 0.482 m Side water Depth (SWD) = Length 3 m = Free Board 2 m= Total Depth of Pure Water Channel = 2.482 m

HYDRAULIC DESIGN

• PIPE

Generated by inodedesign

HYDRAULIC DESIGN OF PIPE

The role of Pipe is to convey water from one element to the another.

(Reference Table No. 1)

- \checkmark Number of Units = 1 Nos
- ✓ Designed Flow Per Unit = 50 MLD
- \checkmark Designed Capacity in m³/sec = 0.579 m³/sec

1.1 ASSUMPTIONS & CALCULATIONS:

> Assumed velocity of flow through Pipe = 0.6 m/sec

Provide Standard D.I Pipe of Internal Diameter = 1.200 m

 \triangleright Corresponding thickness of Pipe (K7) = 0.01530 m

Hence, Outer Diameter = 1.231 m

1.2 VALIDATION CHECKS:

1. Provided Diameter 1.200 m > Required Diameter = 1.108 m

Hence Diameter provided of Pipe is Sufficient.

2. Velocity Achieved = 0.512 m/s

DESIGN SUMM	IARY	- PIPE
Velocity	=	0.512 m/s
Internal Diameter of Pipe	=	0.512 m
Thickness of Pipe	=	0.01530 m
Outer Diameter of Pipe	=	1.231 m

HYDRAULIC DESIGN

PURE WATER SUMP (CIRCULAR)

Generated by inodedesign

SOME PAGES ARE KEPT BLANK INTENTIONALLY

ANNEXURE - II

• HYDRAULIC HEAD LOSSES AND REDUCED LEVELS

HYDRAULIC HEAD LOSSES AND REDUCED LEVELS	
NOTATION	ABBREVIATION
HL	Head Loss
TWL	Total Water Level
FSL	Full Supply Level
RL	Reduced Level
h _{fr} , h _f	Frictional Loss
g	Gravitational Acceleration
С	Manning's Coefficient
f	Hazen William Coefficient
R	Hydraulic Radius
S	Hydraulic Gradient
h _{en}	Head Loss at Entry
h _{ex}	Head Loss at Exit
h _b	Head Loss due to Bend
h _{se}	Head Loss due to Suddden Expansion
h _{sc}	Head Loss due to Sudden Contraction
K _{en}	Entry Head Loss Coefficient
K _{ex}	Exit Head Loss Coefficient
Kb	Bend Head Loss Coefficient
K _{se}	Expansion Head Loss Coefficient
K _{sc}	Contraction Head Loss Coefficient
Q	Discharge in m³/sec
V	Velocity in m/sec
SWD or d	Side Water Depth in m
b	Width in m
d	Diameter in m
L	Length in m

Formulae Used for Calculating Head Losses:

I. Frictional Losses in Open Channels:

Using Manning's Formula Hydraulic Gradient (S)

 $\left[rac{Velocity imes n}{R^{2\!\!/_3}}
ight]^{1\!\!\left/\left(1\!\!/_2
ight)}$

=

n	=	Manning's Coefficient		
Hydraulic Radius (R)	=	$\frac{Cross\ Sectional\ Area}{Wetted\ Perimeter}$		
	=	$\frac{b\times d}{b+2d}$		
Frictional Loss	=	$Hydraulic\ Gradient\ (S) imes Length$		
II. Frictional Losses in Pipes:				
a. Frictional Losses by Hazen William Equation \checkmark Assuming value of $C = 100$	ition:			
\mathbf{h}_{fr}	=	$igg[rac{Velocity}{0.85 imes C imes R^{0.63}}igg]1igg _{0.54} imes$ Length of Pipe		
Where, C	=	Hazen William Coefficient (Refer Table No.)		
R	=	Hydraulic Radius		
	=	$rac{Diameter}{4}$		
b. Frictional Losses by Darcy Weisbach Equation:				
\mathbf{h}_{f}	=	$igg[rac{f imes L imes Q^2}{12.1 imes d^5}igg]$		
Where, f	=	Darcy Weisbach Coefficient (Refer Table No.)		
L	=	Length of Pipe in m		
Q	=	Discharge in m ³ /sec		
d	=	Diameter of Pipe in m		
III. Minor Head Losses in Pipes:				
a. Loss at Entry:				
\mathbf{h}_{en}	=	$rac{K_{en} imes V^2}{2 imes g}$		
b. Loss at Exit:				
h _{ex}	=	$rac{K_{ex} imes V^2}{2 imes g}$		
c. Loss due to Bend:				
$\mathbf{h}_{\mathbf{b}}$	=	$\frac{K_b \times V^2}{2 \times g}$		

d. Loss due to Sudden Enlargement:				
\mathbf{h}_{se}	=	$rac{{K_{se} imes {V_1}^2 }}{{2 imes g}}$		
e. Loss due to Sudden Contraction:				
\mathbf{h}_{sc}	=	$rac{{K_{sc} imes {V_2}^2}}{2 imes g}$		
Where K_{en} , K_{ex} , K_{b} , K_{se} For Coefficient Details v = velocity in m/sec g = Gravitational Acce	, K _{sc} are refer T leration	e Head Loss Coefficients able No.		
Formulae Used for Calculating Water and Reduced Levels:				
TWL at Start of an Element	=	$Preceeding TWL_{Element} - Assumed Drop_{Element}$		
TWL at End of an Element	=	$TWL_{Element} \ at \ start - Total \ Head \ Loss_{Element}$		
RL at Start of an Element	=	$TWL_{Element} \ at \ start - SWD_{Element}$		
RL at End of an Element	=	$TWL_{Element} \ at \ End-SWD_{Element}$		

HEAD LOSSES

• REDUCED LEVELS

Generated by inodedesign

iNODE SOFTWARE CO.

HEAD LOSS	SES A CASCA	ND REDUCED LEVELS ADE AERATOR)
1. STEPS AND PLANNER ✓ No. of Steps = 5 Nos. ✓ Rise of Steps = 0.3 m ✓ Diameter of Aerator = 7.3 m		
2. COLLECTION LAUNDER ✓ Velocity in Launder = 0.65 m/sec ✓ Width of Launder = 0.6 m ✓ SWD = 0.742 ✓ Free Board = 0.3 m		
HEAD LOSS CALCULATIONS AND LEVEL ▷ R.L at Lip of Aeration Fountain = 150 m ▷ Free Fall from last step to collection laur	L S: ader =	0.01 m
Total Loss from lip of fountain	=	$(No \ of \ Steps imes Rise_{Step}) + Free \ Fall (5 imes 0.3) + 0.01$
Total Loss from Lip of Fountain	=	1.510 m
> Assumed Total Loss from Lip of Fountain	= 1.5	10 m
TWL of Collection Launder at start	=	$RL \ of \ Lip - (Total \ Loss + Additional \ Losses)$ $150 - (1.510 + 0.01)$
TWL of Collection Launder at start	=	148.480 m
R.L of Collection Launder Bottom at start	=	$TWL \ of \ Collection \ Launder \ at \ start - SWD \ of \ Launder$ 148.480 - 0.742
R.L of Collection Launder Bottom at start	=	147.738 m
R.L of Collection Launder Top at start	= =	$TWL \ of \ Collection \ Launder \ at \ start + Free \ Board$ 148.468 $+$ 0.3
R.L of Collection Launder Top at start	=	148.038 m
Length of Launder	=	$rac{\pi}{2} imes~(Diameter_{Aerator}+Width_{Launder}) onumber \ rac{3.14}{2} imes~(7.3+0.6)$
Length of Launder	=	2 12.40 m

> Frictional Loss in Launder, Using Manning's Formula and taking Manning's Coefficient for R.C.C as n = 0.13

Hydraulic Gradient (S) =
$$\left[\frac{Velocity \times n}{R^{\binom{2}{3}}}\right]^{1/\binom{1}{2}}$$

	=	$\left[\frac{0.6\times 0.013}{0.21363 \binom{2}{3}}\right]^{1\!\!\!\!/\binom{1}{2}}$
Hydraulic Gradient (S)	=	0.00056
Frictional Loss in Launder	=	$Hydraulic\ Gradient imes Length\ of\ Launder$
Frictional Loss in Launder	=	0.007 m
TWL of Collection Launder at End = TWL	L of L	$Launder \ at \ Start - (Frictional \ Loss + Additional \ Loss)$
= 148.4	480 -	(0.007 + 0.005)
TWL of Collection Launder at End = 148.4	468 m	
R.L of Collection Launder Bottom at End	=	$TWL \ of \ Collection \ Launder \ at \ End \ - \ SWD_{Launder}$
	=	$148.468\ -0.742$
R.L of Collection Launder Bottom at End	=	147.726 m

SOME PAGES ARE KEPT BLANK INTENTIONALLY

Generated by inodedesign

HEAD LOSSES AND REDUCED LEVELS (PURE WATER CHANNEL)

 ✓ Velocity of Flow in Channel = 0.6 m/sec ✓ Depth of Water (SWD) = 0.482 m ✓ Length of Channel = 3 m ✓ Width of Channel = 2 m HEAD LOSS CALCULATIONS AND LEVELS ▷ TWL of Rapid Sand Gravity Filter at end = ▷ Assumed Drop in Channel = 0 m 	S: = 146.43	'5 m
TWL of Channel at start	=	$TWL \ of \ Launder \ at \ End - Drop$
	=	146.435 - 0
TWL of Channel at start	=	146.435 m
RL of Channel at Start	=	$TWL \ of \ Channel \ at \ Start - SWD_{Channel}$
	=	146.435 - 0.482
RL of Channel at Start	=	145.953 m
▷ Frictional Loss in Channel, Using Mannin 0.13	g's Form	nula and taking Manning's Coefficient for R.C.C as n =
Hydraulic Gradient (S)	=	$igg[rac{Velocity imes n}{R^{igg(^2\!/_3igg)}}igg]^{1ig/ig(^1\!/_2ig)}$
	=	$\left[\frac{0.6\times 0.013}{0.32524^{2/_{3}}}\right]^{1\!\!\!/\binom{1/_{2}}{2}}$
Hydraulic Gradient (S)	=	0.00027
Frictional Loss in Channel	=	HydraulicGradient imes Length of Channel
	=	0.00027 imes 3.00
Frictional Loss in Channel	=	0.00081 m
 ▷ Assumed Frictional Loss in Channel = 0.0 ▷ Assumed Additional Head Losses Remark 	00081 m = 0 m	
TWL of Channel at End = TV	VL of C	The main constraint of the second constraints of the second constrai
= 146	6.435 -	(0.00081 + 0)
TWL of Channel at End = 146	6.434 m	
R.L of Channel Bottom at End = H	R. L of C	Channel Bottom at Start
R.L of Channel Bottom at End $=$ 1	ז 45.953	n

HEAD LOSSES AND REDUCED LEVELS (PIPE)

 ✓ Designed Flow = 0.579 m³/sec ✓ Velocity of water in Pipe = 0.6 m/sec ✓ Diameter of Pipe = 1.200 m ✓ Length of Pipe = 3 m HEAD LOSS CALCULATIONS AND LEVELS ▷ TWL of Channel at end = 146.434 m):	
Total Head Losses in Pipe	=	A_{HL}
	=	0
Total Head Losses in Pipe	=	0.000 m
TWL at the start of Pure Water Sump =	$TWL \ c$ 146.434	$of\ Pure\ Water\ Channel\ at\ end\ -\ Total\ Head\ Losses\ in\ Pipe$ 4-0.000
TWL at the start of Pure Water Sump =	146.434	4 m

HEAD LOSSES AND REDUCED LEVELS (PURE WATER SUMP)

 \checkmark Water Depth (SWD) = 3 m

HEAD LOSS CALCULATIONS AND LEVELS:

> TWL of Pure Water Sump at the start = 146.434 m

FSL in Sump	=	$TWL \ at \ Start - (Drop + Free \ Fall)$
	=	$146.434 - (0.050 \mathrm{\ m} + 0.300 \mathrm{\ m})$
FSL in Sump	=	146.084 m
RI of Sump Bottom	_	$FSL in Sumn - SWD_{a}$
ne of Sump Doctom	_	$146\ 084 - 3$
RL of Sump Bottom	=	143.084 m
<i>,</i> ,		

Г

TOTAL WATER LEVEL AND REDUCED LEVELS						
AVERAGE GL OR RL AT START = 150 m						
SR NO.	ELEMENT	CUMULATIVE HEAD LOSS	TOTAL WATER LEVEL		REDUCED LEVEL	
			START	END	START	END
1	CASCADE AERATOR	1.532 m	150	148.468	150	147.726
2	PARSHALL FLUME	1.991 m	148.468	148.009	147.322	147.459
3	FLASH MIXER	1.996 m	148.009	148.004	138.004	138.004
4	PIPE	2.011 m	148.004	147.989		
5	PIPE	2.011 m	147.989	147.989		
6	CLARIFLOCCULATOR	2.056 m	147.989	147.944	147.023	146.979
7	CHANNEL	2.061 m	147.944	147.939	146.657	146.653
8	FILTER INLET CHANNEL	2.062 m	147.939	147.938	147.112	147.112
9	RAPID SAND GRAVITY FILTER	3.565 m	147.938	146.435		145.338
10	PURE WATER CHANNEL	3.566	146.435	146.434	145.953	145.953
11	PIPE	3.566 m	146.434	146.434		
12	PURE WATER SUMP	3.916 m		146.434		143.084

iNODE SOFTWARE CO.

